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Abstract

Infection of adherent cell monolayers using a liquid inoculum represents an established method to 

reliably and quantitatively study virus infection, but poorly recapitulates the exposure and 

infection of cells in the respiratory tract that occurs during infection with aerosolized pathogens. 

To better simulate natural infection in vitro, we adapted a system that generates viral aerosols 

similar to those exhaled by infected humans to the inoculation of epithelial cell monolayers. 

Procedures for cellular infection and calculation of exposure dose were developed and tested using 

viruses characterized by distinct transmission and pathogenicity phenotypes: an HPAI H5N1, an 

LPAI H7N9, and a seasonal H3N2 virus. While all three aerosolized viruses were highly infectious 

in a bronchial epithelial cell line (Calu-3) cultured submerged in media, differences between the 

viruses were observed in primary human alveolar epithelial cells and in Calu-3 cells cultured at 

air-liquid interface. This system provides a novel enhancement to traditional in vitro experiments, 

particularly those focused on the early stages of infection.
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Introduction

Infection of adherent cell monolayers using a liquid inoculum represents an established 

method to reliably and quantitatively study virus infection. Relatively straightforward and 

inexpensive, this method allows for the frequent collection of viral samples and the testing 

of a variety of experimental conditions and discrete cell types including those of human 

origin. Unfortunately, traditional in vitro replication studies poorly recapitulate the exposure 

and infection of cells in the respiratory tract that occurs during natural exposure to 

aerosolized pathogens. Not only does infection occur while cells’ apical surface is immersed 

in liquid, but at typical cell densities, the often-used “low” multiplicity of infection (MOI) of 

0.01 corresponds to a dose of over a thousand PFU per square centimeter.
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Available evidence suggests that in the case of aerosol transmission, natural human influenza 

infection is likely initiated by substantially fewer particles. Studies of infected patients found 

low viral concentrations in aerosols generated by breathing, coughing, and/or sneezing 

(Fabian et al., 2008; Milton et al., 2013; Yang et al., 2011), and fewer than five TCID50 are 

capable of initiating symptomatic infection in experimentally exposed volunteers (Alford et 

al., 1966). Similar results have been observed in the ferret model; these animals can be 

infected with fewer than ten PFU and subsequently exhale under five PFU per minute 

(Gustin et al., 2015; Gustin et al., 2011; Gustin et al., 2013; Roberts et al., 2011). Using a 

library of barcoded viruses, Varble et al. found that respiratory droplet transmission between 

ferrets involved only single-digit numbers of virions (Varble et al., 2014). Reports of 

A(H7N9) cases developing subsequent to patient visits to live bird markets despite lack of 

poultry contact, and the detection of virus in air sampled from such markets, indicate that 

zoonotic infection may also occur after human exposure to low quantities of aerosolized 

virus (Li et al., 2015; Liu et al., 2014; Zhou et al., 2016).

In order to better study the effects of potentially damaging aerosols on human cells, the 

toxicology field has begun to expose cultured respiratory epithelial cells to aerosolized, 

rather than liquid-suspended, chemical and particulate matter. Cells have been shown to be 

more sensitive to the effects of the former (Bitterle et al., 2006; Raemy et al., 2012). In these 

studies, aerosol concentration can be measured by the use of optical or gravimetric methods. 

These types of methods are not effective for the measure of virus-containing aerosols, 

however, because they detect liquid droplet nuclei rather than the virus within them, and 

cannot differentiate between infectious and non-infectious virions. Microbiologists have 

developed aerosolization systems to overcome these challenges, and have used them for 

experimental infections of animals and to study the effect of environmental conditions on 

viability of numerous pathogens including Mycobacterium tuberculosis, Bacillus anthracis, 

measles virus, and influenza virus (Clark et al., 2011; Gustin et al., 2011; Lemon et al., 

2011; Savransky et al., 2013). This work has provided important insights into the intra- and 

inter-host spread of these pathogens by facilitating the observation and manipulation of near-

natural infection within a controlled laboratory environment. However, despite the frequent 

employment of in vitro studies to complement animal experimentation, use of an aerosol 

system for in vitro infection with any pathogen has not, to our knowledge, been previously 

described.

We combined aspects of the toxicological and microbiological approaches to establish a 

novel method to expose adherent mammalian cell monolayers in air-liquid interface to 

defined quantities of aerosolized influenza virus and compared this with traditional liquid 

inoculation. In order to most effectively mimic the conditions of natural infection, we 

explored the use of very low MOI infection and culture techniques designed to promote cell 

differentiation in conjunction with virus aerosolization. Using highly pathogenic avian 

influenza (HPAI), low pathogenic (LPAI), and seasonal influenza viruses, we demonstrate 

that infection of respiratory epithelial cells with physiologically low concentrations of 

aerosolized virus can be successfully recreated inside the laboratory. In conjunction with 

research using animal models, these techniques facilitate a closer study of the infectivity of 

aerosolized influenza virus in the context of human infection. The approach described here 
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is not restricted to influenza virus and would also be applicable to the study of other 

respiratory viruses of public health concern.

Materials and Methods

Viruses

Influenza A viruses were propagated in the allantoic cavity of 10-day-old embryonated hens’ 

eggs and titered via standard plaque assay using Madin-Darby canine kidney (MDCK) cells 

as previously described (Maines et al., 2005; Zeng et al., 2007). All experiments were 

conducted under biosafety level 3 containment, including enhancements as required by the 

U.S. Department of Agriculture and the Federal Select Agent Program (Chosewood et al., 

2009).

Cell culture and liquid inoculations

The bronchial epithelial cell line Calu-3 (ATCC) was cultured as previously described (Zeng 

et al., 2007). Primary human alveolar epithelial cells (Cell Biologics) were cryopreserved at 

passage 3, then grown and expanded per manufacturer’s instructions. All cells were seeded 

on 24 mm diameter (6-well format) or 12 mm diameter (12-well format) semipermeable 

membrane inserts with a 0.4µm pore size (Corning) and grown to confluence under 

submerged conditions. After reaching a transepithelial resistance of >1,000 Ω2 (Zeng et al., 

2007), apical media was removed from selected Calu-3 cells to create an air-liquid interface 

(ALI), which was maintained for three weeks to facilitate cell differentiation and the 

establishment of a mucin layer.

Prior to inoculation, apical media (if present) was removed from the cell monolayer and 

cells cultured under submerged conditions were washed to remove serum present in culture 

media. Liquid inoculation was performed using 300µL of virus, diluted as specified in the 

results, and incubated on the cell surface for one hour before washing. After infection, cells 

were cultured in cell type-specific serum-free medium to which 1µg/mL N-p-tosyl-L-

phenylalanine chloromethyl ketone (TPCK)-treated trypsin (Sigma-Aldrich) was added for 

alveolar cell cultures. Aliquots of apical culture supernatant or wash media (incubated atop 

cells cultured at ALI for 20 minutes) were collected at the indicated times post-infection 

(p.i.) and immediately frozen at −80°C until titration. Growth curves were generated and 

analyzed using Prism 6.0.7 (GraphPad Software Inc.).

Aerosol inoculations

The automated bioaerosol system used for all experiments has been previously described in 

detail (Gustin et al., 2011; Hartings and Roy, 2004) and all conditions were maintained here 

unless specified otherwise. Briefly, virus suspended in a solution of PBS-0.03% (w/v) BSA 

was aerosolized using a three-jet Collision nebulizer (BGI, Inc.) and passed through an 

exposure chamber at a rate of 20 L/min. Cells placed inside the exposure chamber on a wire 

mesh shelf were inoculated under air-liquid interface conditions (Fig. 1). Using the AeroMP 

(Biaera Technologies) aerosol management platform, aerosol exposures were conducted at 

21°C and 50% relative humidity for 15 min followed by a 5 min purge to allow evacuation 

of the aerosolized virus from the chamber (Gustin et al., 2011). Prior to in vitro exposure, 
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spray factor (SF) values were determined for stocks of all viruses to estimate the starting 

virus concentration in the nebulizer needed to obtain a desired quantity of virus in the 

aerosol. A Biosampler (SKC Inc) was used to quantify the virus actually aerosolized within 

the chamber during each exposure. Following aerosol exposure, membrane inserts were 

transferred to clean 6-well or 12-well plates and serum-free medium was added to apical and 

basolateral compartments as described above; cells maintained under ALI conditions had 

medium added to the basolateral compartment only. Confirmation of cell viability during 

aerosol exposure was performed using the WST-1 cell proliferation reagent (Roche Applied 

Science), according to manufacturer’s instructions, with four independent samples tested for 

each condition.

Quantitation of Exposure and Infectious Doses

The total number of infectious virions passed through the chamber during the exposure 

session (Ncham) was calculated as

where Csamp is the concentration of virus in the sampler, Vsamp is the volume of media in the 

sampler, and Qcham and Qsamp represent the flow rates of chamber and sampler, respectively 

(see supplemental methods for derivation). Ncham was multiplied by the ratio of the surface 

area of each transwell (SA) to the cross-sectional area of the chamber (XA) to yield 

exposure dose (ED). ID50s were calculated according to the method of Reed and Muench, 

with the proportional distance multiplied by log10(dose above 50%)/log10(dose below 50%) 
to account for the deviation of exposure doses from exact 10-fold dilutions (Reed and 

Muench, 1938). Variability around the mean exposure dose was quantified using a binomial 

model with n viable virions passing through the chamber and a probability of success (virion 

lands on well) equal to SA/XA. Upper and lower critical values at the 95% confidence level 

were calculated using R 3.2.3 (R Foundation for Statistical Computing); the true exposure 

dose for any particular well has a 95% chance of falling between these two values. The 

cumulative probability distribution indicated that the minimum dose had to be three or 

greater for 95% of all wells to be inoculated with at least one virion. In order minimize the 

chance of including a well not exposed to any virus, we therefore aimed not to use mean 

exposure doses under 5 PFU. When this did occur due to variations in aerosolization 

efficiency, the minimum 50% infectious dose is reported as ≤ 3 PFU.

Real-time RT-PCR

Total RNA was extracted from mock-infected or virus-infected cell monolayers after 

removal of supernatant using the RNeasy mini kit (Qiagen). RT-PCR was performed with a 

QuantiTect SYBR green RT-PCR kit (Qiagen) in duplicate reactions from duplicate samples 

using an influenza A virus M1 gene primer set (Zeng et al., 2007). Influenza virus M gene 

RNA copy numbers were extrapolated using a standard curve based on samples of known M 

gene copy number.
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Results

System establishment and exposure dose determination

Rather than use the type of exposure system described in studies of cellular responses to 

aerosolized particulate matter (eg. CULTEX Radial Flow System), we employed one 

intended for use in animal infection. Previously optimized for use with influenza virus 

(Gustin et al., 2011), this system and its components are designed to maintain the viability of 

biological aerosols. This system features a large exposure chamber, which allows for 

simultaneous exposure of several plates of cells, facilitating comparisons of different cell 

types or growth conditions between uniformly exposed wells (Fig. 1).

In vitro inoculations of cells grown on semi-permeable membrane inserts (transwells) were 

conducted as follows: apical media (if present) was removed immediately prior to exposure, 

then plates holding the inserts and basolateral media were placed in the chamber and 

exposed to ten-fold serial dilutions of aerosolized virus for a duration of 15 minutes. 

Following exposure, inserts were transferred to a sterile tissue culture plate containing fresh 

basolateral media and apical media was replaced. Mock infection led to no significant 

decrease in cell viability (data not shown), indicating that the presence of basolateral media 

was sufficient to keep the cells from drying out during exposure.

The ability to quantitate the dose to which an animal or cell monolayer is exposed is a 

critical component of experiments utilizing aerosol-based exposure systems (Hartings and 

Roy, 2004), and is necessary for comparison of aerosol infections with those conducted by 

the more traditional liquid route. We found that titration of virus collected in wells of media 

placed in the chamber alongside the cells was insufficiently sensitive to reliably quantify the 

low doses to which each monolayer was exposed (data not shown), possibly because 

deposition efficiency differed between the cell surface and the liquid media. We therefore 

modeled our approach on that used in aerosol inoculation of animals. Presented dose for an 

animal can be expressed as the total number of infectious virions passing through the 

chamber during an exposure session multiplied by the ratio of the volume of aerosol inhaled 

by the animal to the total volume of aerosol passed through the chamber (see supplemental 

methods for derivation). For in vitro quantification, we substituted the ratio of the surface 

area of each transwell insert to the cross-sectional area of the chamber for the ratio of 

inhaled to total aerosol volume. Because the efficiency of particle deposition on the cell 

surface was estimated to be approximately 100%, presented dose and exposure dose were 

considered equivalent. No correlation between plate position within the chamber or well 

position within the plate and virological outcome was observed.

Validation of experimental approach

Initial characterization studies were conducted using the Calu-3 human bronchial epithelial 

cell line. This cell type is relevant to respiratory infection and has previously been shown to 

support replication of a variety of influenza A viruses, though published studies have 

typically used MOIs of 0.01 (equivalent to 10,000 TCID50 or PFU per 24mm well) or higher 

(Zeng et al., 2007; Zhou et al., 2011). In order to generate comparison data for aerosol 

infections, we first conducted an analogous experiment using traditional liquid inoculation at 
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a wide range of doses. Two influenza viruses known to replicate with high efficiency (A/

Thailand/16/2004 [Thai/16, HPAI A(H5N1)] and A/Anhui/1/2013 [Anhui/1, LPAI 

A(H7N9)], both isolated from fatal human cases) were serially diluted and used to inoculate 

quintuplicate wells. Because of the potential for both random and systemic error in making 

repeated serial dilutions, we titrated all inocula, enabling us to more precisely estimate the 

number of infectious virions to which each well was exposed. RNA was collected from the 

cell monolayers of two wells 24 hours post-inoculation and assayed for the presence of viral 

nucleic acid via RT-PCR with primers specific to the M1 gene. Growth kinetics in the 

remaining three wells were monitored by titration of cell supernatants collected between 2 

and 96 hours post-infection (Fig. 2). At inoculum doses above our limit of detection (10 

PFU/mL or 3 PFU/well), both viruses consistently infected all replicate wells and replicated 

to high titer, though growth was somewhat delayed at lower inoculation doses relative to 

higher ones (Figs. 2, 3B). We also observed robust replication in cultures inoculated with 

approximately 1 PFU (dose estimated from serial dilution) of Anhui/1 virus. At doses of less 

than one PFU, infection was infrequent, characterized by low titers and undetectable levels 

of viral nucleic acid in the cell monolayer 24 hours after inoculation.

Aerosol experiments were conducted with three viruses chosen to represent a diversity of 

mammalian in vivo pathogenicity and transmissibility phenotypes: Thai/16, Anhui/1, and A/

Panama/2007/99 (Panama/99, seasonal A(H3N2)). All three viruses infected Calu-3 cells 

with high efficiency following aerosol exposure (Fig. 3). We observed rates of productive 

infection comparable to those seen after inoculation using a liquid suspension, with 50% 

infectious doses (ID50s) for all three viruses of under five PFU. High peak viral titers (108 

PFU/ml) were detected in the supernatant regardless of exposure dose, though, as with liquid 

inoculum, replication was delayed at lower inoculation doses (Fig. 3). Duplicate cultures 

were incubated post-exposure at 33°C, a temperature thought to represent that of the 

mammalian upper respiratory tract, after infection to see whether infectivity was 

temperature-dependent. We found that while 24-hour titers of the two avian viruses were 

slightly lower at this temperature than at 37°C, infectivity of these cultures was reduced only 

for Panama/99 virus, and only slightly (ID50 of 12 vs ≤ 3 PFU).

The concordance in infectious dose between aerosol and liquid inoculations suggested that 

our calculated exposure dose for each well accurately represented the average number of 

virions to which a well was truly exposed. To confirm this, we conducted a series of 

exposures at doses near 1 PFU (range 0.02 to 7 PFU) per well. In light of our liquid 

exposure data with Thai/16 and Anhui/1, we reasoned that if the calculated exposure doses 

were accurate, the majority of Calu-3 wells should be infected with either of these viruses at 

doses ≥1 PFU, whereas few wells would be infected at doses <1 PFU. Consistent infection 

at calculated doses under 1 PFU would indicate that the true exposure dose was higher than 

the calculated one. Conversely, infrequent infection at doses ≥1 PFU would suggest that the 

actual exposure dose was less than the calculated one. In order to conduct a quantitative 

analysis, we determined the number of wells we would expect to become infected after each 

set of exposures using a Poisson binomial model (Hong, 2013). We statistically compared 

the expected number of infected wells (based on our calculated exposure dose) to the 

number of wells observed to be infected in our experiment (reflective of actual exposure 

dose) (Table 1). Even though our tests were highly powered (≥ 99% chance of detecting a 
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half-log difference between true and calculated exposure doses if a difference was present), 

we did not detect such a difference for either of the viruses tested (p>0.05). This suggested 

that our estimation of 100% deposition efficiency did not compromise our exposure dose 

estimates.

Infection of primary human alveolar cells

Having validated our methodology using a transformed cell line, we next investigated the 

ability of low-dose aerosols to infect primary human alveolar epithelial cells. Seasonal 

influenza A viruses are typically restricted to the upper respiratory tract during infection of 

humans and mammalian models, while avian viruses are often detected in the lungs. 

However, multiple in vitro studies have found primary human alveolar cells to be permissive 

for the replication of human influenza viruses (Weinheimer et al., 2012; Yu et al., 2011). We 

hypothesized that this discrepancy might be an artifact caused by the artificial nature of the 

liquid inoculum used in the in vitro studies. After confirming that liquid-based inoculation 

with Thai/16, Anhui/1, and Panama/99 viruses at an MOI of 0.01 led to productive 

replication in primary human alveolar cells (Figs. 4A and 4C), we exposed the alveolar cells 

to multiple concentrations of the same three viruses, this time by the aerosol route. Thai/16 

virus was highly infectious, replicating productively in wells exposed to an average of ≤ 3 

PFU (MOI = 2.6×10−6). In contrast, replication of Panama/99 or Anhui/1 viruses could not 

be detected at any of the doses tested following aerosol inoculation (Fig. 4A). Repetition of 

the highest-dose aerosol inoculation confirmed the absence of detectable replication of 

Anhui/1 virus (Fig. 4C). Low levels of Panama/99 virus were present in the cell supernatant 

of all three triplicate wells, but in all cases, titers peaked 24 hours post-infection and 

declined thereafter, indicating unsustained or unproductive replication. To determine 

whether the lack of replication was a product of inoculation route or dose, we exposed cells 

to a liquid inoculum at an MOI (~0.001) equivalent to that of our most concentrated aerosol 

inoculation. Growth kinetics were similar to those observed after the 0.01 MOI infections, 

suggesting that the lack of replication in a permissive cell type could be attributed to the 

aerosol delivery of the virus and not to its low concentration.

Infection of cells cultured under air-liquid interface

In order to reach susceptible cells, inhaled pathogens must penetrate the mucus layer coating 

the airway epithelium. The mucus layer and epithelium can be simulated in vitro by 

culturing respiratory cell lines or primary cells at air-liquid interface (ALI: media is present 

only on the basolateral side of the monolayer, with the apical side left exposed to air). 

Culture at ALI causes cells to differentiate and form a pseudostratified, columnar 

epithelium, comprising multiple cell types, including mucus-secreting goblet cells (Kreft et 

al., 2015). However, it has not previously been possible to recreate the interaction of 

aerosolized pathogens with respiratory mucus in an in vitro setting. We therefore compared 

the susceptibility of Calu-3 cells grown at ALI and liquid-liquid interface (LLI: media 

present on apical and basolateral sides) to infection with aerosolized virus. Infectivity of 

Calu-3 cells cultured at ALI for three weeks (sufficient to induce substantial mucus 

production (Haghi et al., 2010; Kreft et al., 2015)) varied by virus (Fig. 5): Panama/99 

infectivity was only slightly abrogated (ID50 increased from ≤ 3 to 7) whereas Thai/16 and 

Anhui/1 were over 25 times less infectious in the ALI-cultured cells than those cultured at 
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LLI. When cells were successfully infected with any of the viruses, replication was delayed 

and reached lower titers in ALI cultures as compared to LLI (Fig. 5). Together, these data 

demonstrate that the capacity for aerosolized inocula to infect cultures of differentiated 

human airway cells is abrogated but not eliminated by the presence of a mucin layer.

Discussion

While a growing body of work describes the characteristics of aerosolized microbes, the 

interaction of pathogen-laden aerosols with the airway epithelium has not been specifically 

examined. We demonstrate here that infection of adherent cell monolayers by aerosol is 

feasible, and we describe and validate a straightforward method for the calculation of 

exposure dose, which facilitates comparison between infections using liquid and aerosol 

inocula. While in vitro replication studies typically measure viral titers over time after 

infection with a single MOI, we found that measuring viral infectivity at a variety of MOIs 

was more informative.

Measurements of infectivity may also be more relevant to virus transmission. Interestingly, 

we found that culture of Calu-3 cells at 33°C post-aerosol-inoculation did not significantly 

reduce the ability of any of the viruses tested to establish infection. While we did not 

perform a liquid comparison, we would expect comparable results given the consistency of 

replication of the tested viruses in this cell type. It is important to note, however, that all 

three viruses have a lysine at position 627 of the PB2 gene rather than a glutamate, which is 

known to restrict replication at this temperature (Neumann and Kawaoka, 2015). More 

significant effects on infectivity might be observed with viruses that have a glutamate at this 

position or in other cell types.

Studies utilizing very low MOI may play an important role in advancing our understanding 

of influenza virus transmission by simulating in vitro the conditions under which infection is 

first established in a new human host. At decreased MOI, for example, the rate at which 

semi-infectious particles are able to replicate synergistically through cellular co-infection is 

reduced (Fonville et al., 2015), but the diminished proliferation of defective interfering 

particles may lessen innate immune activation, thereby allowing for increased viral 

replication. Indeed, previously published work with influenza and other viruses describes 

differences in viral replication at high and low MOI (Aggarwal et al., 2011; Huh et al., 2008; 

Miller et al., 1994). We have demonstrated here the feasibility of studies using very low 

MOI; though we observed only subtle changes in replication kinetics as MOI decreased, 

similar across all viruses tested, more pronounced effects may be observed with other 

viruses, cell types, and/or culture conditions (e.g. temperature).

Droplet nuclei (<5µm) containing virus, unlike larger (>5µm) droplets or virus present on 

surfaces, reaches the lower respiratory tract when inhaled (BeruBe et al., 2009). We were 

therefore particularly interested in the ability of aerosolized virus to infect primary human 

alveolar cells. We found that both the seasonal virus Panama/99 and an outbreak-associated 

A(H7N9) virus, Anhui/1, replicated productively in primary human pneumocytes after 

inoculation via the liquid, but not aerosol, route whereas the HPAI virus Thai/16 was highly 

infectious and replicated to high titer regardless of inoculation method. For Panama/99 virus, 
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these in vitro results are consistent with both ferret studies, which do not detect virus 

replication in the lungs, and with human seasonal virus infections, which are typically 

limited to the upper respiratory tract. In contrast, severe human A(H7N9) cases have been 

characterized by symptoms of lung infection (Chen et al., 2013; Gao et al., 2013; Hu et al., 

2013; Yang et al., 2014; Yu et al., 2013b), and virus has been detected in the lungs of 

experimentally infected animals (Belser et al., 2013; de Wit et al., 2014; Gabbard et al., 

2014; Watanabe et al., 2013; Xu et al., 2014; Zhang et al., 2013; Zhu et al., 2013). Our 

findings raise the possibility that the development of viral pneumonia associated with H7N9 

virus develops not upon initial exposure, but subsequent to viral spread from adjacent 

tissues, and warrant further investigation regarding the dynamics of H7N9 virus infection 

throughout the respiratory tract. The need for such spread may provide a window of 

opportunity for the immune system to restrict the virus before it causes severe disease, 

which would explain the apparent prevalence of clinically inapparent and mild infection with 

this virus (Chen et al., 2014; Ip et al., 2013; Yu et al., 2013a).

Using the Calu-3 cell line, we demonstrated that growth under ALI conditions reduced the 

efficiency of both initial infection and subsequent viral replication. The high viscosity of 

mucus and abundance of virus-binding sialic acids may limit the diffusion of virus between 

cells, thereby reducing viral titers. Notably, abrogation in infectivity resulting from culture at 

ALI was more pronounced with the two avian viruses tested than the seasonal virus 

Panama/99. This finding is consistent with the hypothesis that respiratory mucus serves as 

an important barrier to the ability of avian influenza viruses to transmit between humans, 

possibly because their specificity for α2,3-linked sialic acids makes them more susceptible 

to binding and entrapment by mucus, which some studies have suggested contains glycans 

primarily in the α2,3 conformation (Baum and Paulson, 1990; Couceiro et al., 1993). Use of 

reverse genetics techniques to compare viruses differing only in the sialic binding 

preferences of the hemagglutinin and/or neuraminidase proteins will allow for further 

investigation of this phenomenon.

Aerosol inoculation, particularly when used in conjunction with increasingly sophisticated 

techniques for in vitro cell culture, offers a unique opportunity to study virus-cell 

interactions in an environment resembling that of the human respiratory tract. Our studies 

suggest that aerosol inoculation may enhance studies of viral tropism and improve our 

understanding of the effects of environmental conditions on the ability of influenza virus to 

initiate infection. Continued investigation regarding the role of inoculation route in viral 

binding and entry processes will further our understanding of the infectivity of influenza 

viruses with distinct phenotypes. In addition to influenza, the methods outlined here could 

be used for the study of other respiratory viruses such as severe acute respiratory syndrome 

(SARS) virus, varicella zoster virus (VZV), and measles virus, as well as the risk assessment 

of novel pathogens. The ability to combine aerosol inoculation with the benefits of in vitro 
study, notably the ability to study specific cell types in isolation, will facilitate a greater 

understanding of the infectivity and tropism of respiratory pathogens of public health 

concern.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Graphic representation of aerosol system for in vitro use
Depiction of human cells cultured on transwell inserts and exposed to aerosolized influenza 

virus using a previously characterized system (Gustin et al., 2011). Cell culture dishes rest in 

the exposure chamber on a wire shelf under air-liquid interface conditions for the duration of 

the exposure. Inset, individual transwell inserts are transferred to sterile plates once removed 

from the exposure chamber.

Creager et al. Page 14

Virology. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Replication of influenza A viruses in Calu-3 cells
A) Calu-3 cells were infected by the traditional liquid route (dashed line) or the aerosol route 

(solid line) at the target MOI with the viruses shown, and cultured at 37°C or 33°C. Culture 

supernatants were collected at the indicated times p.i., and titers were determined by 

standard plaque assay to quantify infectious virus. The limit of detection was 10 PFU. Error 

bars indicate standard deviation. Lines represent positive wells (infectious virus detected at 

two sequential timepoints or at 96 hours alone, 3/3 unless otherwise noted) only. Cultures 

with 2/3 positive wells: Thai/16 33°C aerosol 1×10−6, liquid 1×10−7; Anhui/1 33°C aerosol 
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1×10−6, liquid 1×10−7; Panama/99 37°C aerosol 1×10−6. Cultures with 1/3 positive wells: 

Thai/16 37° liquid 1×10−8; Panama/99 33°C aerosol 1×10−5 and 1×10−6. B) Exact inoculum 

dose (PFU) and MOI for each infection shown in panel.
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Figure 3. Infection and replication in Calu-3 cells after aerosol exposure
A) Peak viral titers detected in each well inoculated via the aerosol route. Titers 

(log10PFU/mL) are provided for each well that showed evidence of productive replication, 

defined as infectious virus detected at two sequential timepoints or at 96 hours alone (full 

replication curves are shown in Fig. 2). Exposure dose (PFU) varied slightly between viruses 

and is therefore listed as a range. Exact exposure doses for each virus are listed in Table S1. 

Cells cultured at 33 and 37°C were exposed concurrently. CID50 indicates the 50% cellular 

infectious dose, or MOI required to achieve 50% infectivity, calculated by dividing ID50 by 

the cell number. Limit of detection was 10 PFU. B) Comparison of viral supernatant titer 

(left Y axis) and M copy number (right Y axis) present in the cell monolayer between 

aerosol and liquid inoculation at 24 hours p.i. Cells were cultured at 37°C. Supernatants 

were collected immediately prior to lysis of the cell monolayer for RNA collection. Each 

parameter is expressed as mean ± standard deviation of two independent wells. Limit of 

detection for M segment RNA was 10 copies.
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Figure 4. Replication of influenza A viruses in primary human alveolar epithelial cells
A) Peak viral titers detected in each well inoculated via the aerosol route, as described in the 

legend for Fig. 1A. B) Replication curves for Thai/16 aerosol inoculations shown in panel A. 

Titers shown represent mean ± standard deviation of three wells. C) Comparison of 

replication kinetics subsequent to aerosol or liquid inoculation of human primary alveolar 

epithelial cells. Cells were infected by the aerosol route (solid black line), or by the 

traditional liquid route (dotted line) at an MOI of 0.01 (gray) or 0.001 (black). Aerosol 

MOIs were 0.002, 0.0006, and 0.002 for Thai/16, Anhui/1, and Panama/99 viruses, 

respectively. Culture supernatants were collected at the indicated times p.i., and titers were 

determined by standard plaque assay to quantify infectious virus. The limit of detection was 

10 PFU. Mean ± SD from triplicate cultures (duplicate for Panama/99 liquid inoculum, 0.01 

MOI) is shown.
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Figure 5. Comparison of viral infectivity and replication between cells cultured at liquid-liquid 
(LLI) or air-liquid (ALI) interface
A) Peak viral titers detected in each well inoculated via the aerosol route, as described in the 

legend for Fig 3A. Exact exposure doses are listed in Table S2. Cells cultured at LLI and 

ALI were exposed concurrently and therefore have identical exposure doses. B) Replication 

curves from wells exposed to 116–260 PFU shown in panel A. Culture supernatants were 

collected at the indicated times p.i., and titers were determined by standard plaque assay to 

quantify infectious virus. The limit of detection was 10 PFU. Titers shown represent mean ± 

standard deviation of three wells (two in the case of Thai/16). Two-way ANOVA showed 

that overall titer differences between cells cultured at LLI and ALI were statistically 

significant (p<0.05). For each virus, titers from LLI and ALI wells were compared at each 

individual timepoint (p-values were adjusted for multiple comparisons using the Bonferroni 

correction): * indicates p < 0.05, ** indicates p < 0.001
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